## OMG Series.

Universal device for manifold application needs.

continuous ongoing development, the highly modular OMG se-series devices are very smooth-running and fast, and can folries covers a broad range of areas of application. OMG is there- low quick, pulsation-related changes in flow rates. Stabilization fore particularly suitable for areas of application which have a zones are also unnecessary. Due to their extremely robust manifold need for flow measurement, such as mechanical en- construction, the OMG series provides optimal protection gineering, chemical engineering and marine.

sion, characteristics for which KRAL flowmeters are well-

Robust, precise and universally applicable. Due to their known worldwide. Due to the screw pump principle, all OMG against external influences, such as system vibrations and me-The OMG series also combines robustness with highest preci- chanical stresses in a harsh, industrial environment.







Mechanical engineering. Determining the position of hydraulic cylinders.

Chemical engineering. Measuring of plastic components.

Marine. Fuel consumption measurement.

| Technical data.                |                            | OMG-013.    | OMG-020.               | OMG-032.    | OMG-052.    | OMG-068.    | OMG-100.               | OMG-140.               |
|--------------------------------|----------------------------|-------------|------------------------|-------------|-------------|-------------|------------------------|------------------------|
| Nominal diameter. DN[mm]       |                            | 15          | 20                     | 25/32       | 40          | 50          | 100                    | 150                    |
|                                | DN [inch]                  | 1/2         | 34                     | 1           | 1 ½         | 2           | 4                      | 6                      |
| Total length with DINflange.   |                            |             |                        |             |             |             |                        |                        |
| [mm]                           |                            | 145         | 185                    | 255/265     | 285         | 340         | 460                    | 610                    |
| Weight with DIN flange. [kg]   |                            | 6           | 6                      | 13/15       | 21          | 31          | 77                     | 190                    |
| Flow rate l/h.                 | Q <sub>max</sub>           | 900         | 2,700                  | 9,000       | 31,500      | 63,000      | 180,000                | 450,000                |
|                                | Q <sub>nom</sub>           | 600         | 1,800                  | 6,000       | 21,000      | 42,000      | 120,000                | 300,000                |
|                                | $Q_{min}$                  | 6           | 18                     | 60          | 210         | 420         | 1,200                  | 3,000                  |
| Flow rate I/min.               | $Q_{max}$                  | 15          | 45                     | 150         | 525         | 1,050       | 3,000                  | 7,500                  |
|                                | Q <sub>nom</sub>           | 10          | 30                     | 100         | 350         | 700         | 2,000                  | 5,000                  |
|                                | $Q_{min}$                  | 0.1         | 0.3                    | 1.0         | 3.5         | 7.0         | 20                     | 50                     |
| Max. pressure.                 | [bar]                      | 250         | 250                    | 250         | 160         | 100         | 40                     | 40                     |
| Temperature.                   | [°C]                       | -20 to +200 | -20 to +200            | -20 to +200 | -20 to +200 | -20 to +200 | -20 to +200            | -20 to +200            |
| Viscosity.                     | [mm²/s]                    | 1 to 1x106  | 1 to 1x10 <sup>6</sup> | 1 to 1x106  | 1 to 1x106  | 1 to 1x106  | 1 to 1x10 <sup>6</sup> | 1 to 1x10 <sup>6</sup> |
| Precision of measurementvalue. |                            | ±0.1 %      | ±0.1 %                 | ±0.1 %      | ±0.1 %      | ±0.1 %      | ±0.1 %                 | ±0.1 %                 |
| Repeatability.                 |                            | ±0.01 %     | ±0.01 %                | ±0.01 %     | ±0.01 %     | ±0.01 %     | ±0.01 %                | ±0.01 %                |
| K-factor.                      | K1 [P/l]                   | 1,216       | 640                    | 234         | 71.0        | 39.8        | 16.8                   | 8.8                    |
|                                | K2 [P/I]                   | 2,432       | 1,280                  | 468         | 142         | 79.6        | 33.6                   | 17.7                   |
|                                | K3 [P/I]                   | 7,296       | 2,560                  | 1,014       | 302         | 167         | 57.6                   | 22.1                   |
|                                | K4 [P/I]                   | 7,296       | 2,560                  | 1,014       | 302         | 167         | 87.6                   | 45.1                   |
| Frequency. f1                  | at Q <sub>nom</sub> [Hz]   | 203         | 320                    | 390         | 414         | 464         | 560                    | 738                    |
| f2                             | at Q <sub>nom</sub> [Hz]   | 405         | 640                    | 780         | 828         | 929         | 1,120                  | 1,475                  |
| f3                             | 3 at Q <sub>nom</sub> [Hz] | 1,216       | 1,280                  | 1,690       | 1,760       | 1,949       | 1,920                  | 1,842                  |
| f4 at Q <sub>nom</sub> [Hz]    |                            | 1,216       | 1,280                  | 1,690       | 1,762       | 1,948       | 2,920                  | 3,758                  |



## Your benefits.

- Universally applicable.
- High precision.
- Extremely robust.
- Stabilization zones unnecessary.
- Very smooth-running and fast.
- Low friction and minimal loss of pressure.
- Easy installation.

| Sensor.                                                       | BEG 06* /<br>BEG 06A*. | BEG 43D.     | BEG 44.         | BEG 45 with<br>BEV 13.                        | BEG 47D**  /<br>BEG 47E**. | BEG 53A* /<br>BEG 54A*.   |  |  |  |  |  |
|---------------------------------------------------------------|------------------------|--------------|-----------------|-----------------------------------------------|----------------------------|---------------------------|--|--|--|--|--|
| Application.                                                  | Ex-range.              | Standard.    | High pressures. | High pressures,<br>wide temperature<br>range. | Ex-range.                  | Flow direction detection. |  |  |  |  |  |
| K-factor.                                                     | K1.                    | K1.          | K2.             | K3.                                           | K1.                        | K4.                       |  |  |  |  |  |
| Signal.                                                       | Namur.                 | PNP.         | PNP.            | PNP.                                          | Namur.                     | Push-pull.                |  |  |  |  |  |
| Temperature. [°C]                                             | -25 to +85.            | -20 to +100. | -40 to +150.    | -40 to +250.                                  | -25 (-40) to +100.         | -40 to +125.              |  |  |  |  |  |
| Max. pressure. [bar]                                          | 350                    | 250          | 420             | 420                                           | 40                         | 650                       |  |  |  |  |  |
| * Dependent on nominal diameter. ** Dependent on temperature. |                        |              |                 |                                               |                            |                           |  |  |  |  |  |



## Technical data.

- Media: Chemically neutral, lubricating, clean, non-abrasive.
- Flow direction detection: Extended sensor range optional.
- Temperature measurement: Additional sensor optional.
- Signal: PNP, Namur and Push-pull.
- Signal detection: Via the pole wheel.
- Process fittings: DIN, ANSI, thread, further connections upon request.

## Materials.

- Housing: Spheroidal graphite iron.
- Screws: Nitrided steel.
- Bearings: Steel or hybrid ball bearings.
- Sealing: FKM, other seal materials upon request.